Solární panely a vodovodní potrubí.

Pojistná a zabezpečovací zařízení solárního systému

Solární systémy pro ohřev teplé užitkové vody (TUV) stejně jako jiné tepelné soustavy musí být vybaveny pojistnými a zabezpečovacími prvky.
Základ tvoří především:

  • pojistný ventil
  • expanzní nádoba

Při jejich návrhu vycházíme z topenářských norem, protože české normy solární soustavy samostatně neřeší. Je ale nutné zohlednit specifika solárních systémů, zejména vyšší teploty a rozdílné provozní stavy oproti klasickým otopným soustavám.


Provozní tlaky a teploty v solárních soustavách

Solární sestava se běžně provozuje:

  • od plnicího tlaku „za studena“ při minimální teplotě cca 10–20 °C,
  • až po maximální provozní tlaky a teploty v rozsahu 90–130 °C.

Počáteční plnicí tlak je dán:

  • výškou sloupce teplonosné kapaliny nad místem připojení expanzní nádoby (hydrostatický tlak),
  • minimálním potřebným tlakem v nejvyšším místě soustavy, tedy u kolektoru.

Rozsah minimálního tlaku se volí podle konkrétního zapojení a typu nemrznoucí směsi (nejčastěji propylenglykol). Tlak musí být nastaven tak, aby:

  • byla zajištěna funkčnost soustavy,
  • byl dodržen správný bod varu teplonosné kapaliny,
  • nedocházelo ke zbytečné degradaci směsi.

Pokud teplonosná kapalina degraduje např. nad 120 °C, je nutné udržovat provozní tlak tak, aby teplota varu této kapaliny ležela pod hranicí její degradace.

Při stagnaci kolektorů (maximální ohřev bez odběru) dochází:

  • k varu kapaliny v kolektoru,
  • teplota se dále již nezvyšuje,
  • odpaří se pouze část kapaliny,
  • zbytek je vytlačen zpět do potrubí a do expanzní nádoby.

Tímto se kolektor chrání před nadměrným tepelným zatížením.

Expanzní nádobu je proto nutné dimenzovat tak, aby bezpečně pohltila objem kapaliny vytlačené z kolektorů při stagnaci.

U kapalin odolných vysokým teplotám je možné volit vyšší provozní tlaky, omezit změnu skupenství a minimalizovat pronikání páry do rozvodů.


Pojistný ventil v solárním systému

Pojistný ventil chrání primární okruh solární soustavy před nadměrným tlakem.

  • Otevírací přetlak ventilu určuje maximální tlak v soustavě.
  • Musí být sladěn s tlakovou odolností nejslabšího prvku – obvykle výměníku nebo kolektoru.
  • Podle něj se také volí tlakový stupeň a velikost expanzní nádoby.

Platí zásadní pravidlo:

Mezi pojistným ventilem a okruhem nesmí být žádný uzavíratelný prvek.

Instalace pojistného ventilu přímo do větve u kolektorů na střeše se v praxi nedoporučuje, protože:

  • revize a kontrola na těžko přístupných střechách se téměř nikdy nedělají,
  • venkovní prostředí snižuje životnost ventilu,
  • při otevření ventilu může teplonosná kapalina odtéct na střechu,
  • solární soustava pak ztratí tlak a stane se nefunkční.

Proto v praxi umísťujeme pojistný ventil do technické místnosti, což z hlediska bezpečnosti nepředstavuje problém.

Doporučená praxe:

  • Umístit k pojistnému ventilu také tlakoměr a teploměr.
  • Zajistit, aby pojistné potrubí umožnilo volný odtok média a nezachytávaly se v něm nečistoty.
  • Pojistný ventil musí být umístěn tak, aby nedošlo k opaření obsluhy.
  • Ventil je nutné pravidelně kontrolovat.

U solárních systémů se běžně používá pojistný ventil na 6 bar.


Expanzní nádoba v solárním systému

Expanzní nádoba umožňuje vyrovnávat změny objemu teplonosné kapaliny vlivem tepelné roztažnosti. Zabraňuje:

  • nedovolenému zvýšení tlaku v soustavě,
  • zbytečným ztrátám kapaliny přes pojistný ventil při stagnaci.

V solárních soustavách se dnes používají uzavřené expanzní nádoby s membránou. Dříve bylo možné setkat se i s otevřenými nádobami (podobně jako u otopných soustav), kde se měnila hladina v nejvyšším bodě soustavy.

Konstrukce expanzní nádoby:

  • kovová nádoba,
  • uvnitř pružná membrána oddělující:
    • teplonosnou kapalinu,
    • stlačený plyn (obvykle vzduch nebo inertní plyn).

Oproti nádobám pro klasické otopné soustavy musí solární expanzní nádoba:

  • odolávat vyšším teplotám,
  • být kompatibilní s chemickým složením nemrznoucí směsi,
  • zvládnout opakovnou expanzi a kontrakci kapaliny při vysokých teplotách.

Při stagnaci:

  • pára vytlačí kapalinu z kolektorů do expanzní nádoby,
  • po poklesu teploty pára zkondenzuje,
  • kapalina se vrací zpět do kolektorů.

Umístění expanzní nádoby:

  • může být téměř kdekoli v soustavě,
  • nejčastěji ji umisťujeme na „studenou“ větev primárního okruhu,
    • kvůli nižšímu tepelnému namáhání,
  • musí být instalovaná ve správné vertikální poloze,
    • aby se nezavzdušňovala,
  • je nutná pravidelná kontrola tlaku v nádobě – podmínka správné funkce celého systému.

Solární expanzní nádoby bývají často v bílé barvě a vyrábějí se v objemech cca 10–50 litrů i více, podle velikosti soustavy.


Jak to vypadá v praxi – nejčastější chyby u pojistných prvků

V moderních sestavách je pojistný ventil obvykle součástí solární čerpadlové skupiny, společně s:

  • teploměry,
  • zpětnou klapkou,
  • připojením pro expanzní nádobu.

To je velmi pohodlné řešení – „stačí pověsit čerpadlovou skupinu“.
Problém nastává, když zbytek udělá někdo, kdo nerozumí tlakům a nastavení.


Špatně nastavený provozní tlak

Častá chyba:

  • montážní firma nastaví příliš vysoký tlak v solární soustavě,
  • při stagnaci dochází k častému otevírání pojistného ventilu,
  • nemrznoucí směs uniká ven,
  • po vychladnutí kapaliny je tlak pod provozní hodnotou.

Zároveň nikdo neřešil:

  • tlak v expanzní nádobě,
  • správný vztah mezi předfouknutím nádoby a plnicím tlakem soustavy.

Výsledek:

  • systém je nespolehlivý,
  • směs se zbytečně doplňuje a ředí,
  • zkracuje se životnost nemrznoucí kapaliny.

Expanzní nádoba jen „pověšená na zeď“

Další častý problém:

  • expanzní nádoba je fyzicky nainstalovaná,
  • ale nikdo nezkontroloval ani nenastavil tlak na správnou hodnotu.

Bez správného nastavení:

  • nádoba nefunguje tak, jak má,
  • tlak v soustavě není stabilní,
  • soustava se chová nevyzpytatelně při změnách teplot.

„Pumpička“ na solární potrubí – špatný vtip místo řešení

Za vrchol nevkusu považujeme instalace, kde:

  • firma zákazníkovi namontuje k solárnímu potrubí ventilek a pumpičku,
  • a řekne mu: „Když klesne tlak, prostě si to dopumpujte.“

Výsledkem je, že:

  • zákazník dva roky pumpuje solární systém,
  • místo aby řešil netěsnost nebo chybu v instalaci reklamací,
  • a když mu dojde, že to není normální, je zpravidla po záruce
    a firma už nemá zájem přijet.

Bohužel, instalaci solárního systému dnes provádí leckdo, kdo má ruce a nohy.
Naštěstí musíme dodat, že se stále setkáváme i s velmi pěknými, odborně provedenými instalacemi, za které bychom se podepsali.


Trvejte na odborné instalaci a správném nastavení

Správně navržené a nastavené:

  • pojistné ventily,
  • expanzní nádoby,
  • provozní tlak a plnicí tlak,

jsou klíčové pro:

  • bezpečný provoz,
  • dlouhou životnost nemrznoucí směsi,
  • bezproblémový chod solárního systému.

Při montáži solárního systému trvejte na odborném provedení:

  • ptejte se na nastavení tlaku,
  • chtějte vědět, kde je pojistný ventil a expanzní nádoba,
  • zajímejte se o doporučený servisní interval a kontrolu tlaku.

Dobře navržený a zabezpečený solární systém vám pak může spolehlivě sloužit řadu let bez zbytečných ztrát a nervů.

Podobné příspěvky

  • Drain-back solární systémy

    Drain-back solární systémy Jak fungují syDrain-back solární systémy představují alternativu ke klasickým tlakovým termickým soustavám s nemrznoucí směsí. Pracují na principu samovolného vypuštění kapaliny z kolektorů při nečinnosti, čímž zvyšují bezpečnost provozu a eliminují riziko přehřátí či zamrznutí. Ačkoli nabízejí několik technických výhod, jejich instalace má specifické nároky a v českých podmínkách nejsou příliš rozšířené….

  • Solární ohřev vody s přitápěním

    Solární ohřev vody a přitápění: kdy se vyplatí a jak funguje? Solární ohřev vody s podporou přitápění je jedním z nejúčinnějších způsobů, jak snížit náklady na energii v nízkoenergetických a pasivních domech. Využívá celoroční energii slunce k ohřevu teplé vody a předehřevu topného okruhu, čímž dokáže pokrýt až 70 % spotřeby TUV. Aby byl systém…

  • Češi na světové špičce: neobvyklé využívání FVE k ohřevu vody

    Češi na světové špičce: neobvyklé využívání FVE k ohřevu vody budí překvapení! Odpusťte si fotovoltaiku za 1 Kč Mezi naše nejčastější zákazníky patří majitelé tepelných čerpadel a majitelé fotovoltaických elektráren. Spotřeba elektrických bojlerů mění přístup k využívání vyprodukované energie. Ti, kteří si nechali instalovat fotovoltaické elektrárny a využívají elektrický bojler k ohřevu vody nyní zjišťují, že všechnu elektrickou energii se…

  • Kvalita a životnost prvků solárního systému

    Kvalita a životnost prvků solárního systému Kvalita jednotlivých prvků Kvalita a životnost prvků solárního systému Velice často se na nás obrací zákazníci s dotazy na kvalitu a životnost jednotlivých součástí solárního systému. Abychom mohli spolehlivě určit nejslabší článek začneme složením solárního systému. Vakuovým kolektorům a jejich porovnání s plochými kolektory jsme se věnovali v článku: vakuové nebo deskové kolektory….

  • Složení trubicového solárního kolektoru

    Z čeho se skládá trubicový solární kolektor? Rozebereme si pár solárních kolektorů A/ Složení vakuového trubicového solárního kolektoru 1. Součástí každého solárního kolektoru je konstrukce na kterou je přichycen. Někdy lépe, jindy hůře, už se nám několikrát stalo, že jsme u zákazníků řešili, že firma, která jim montovala solární systém ho udělala hala bala a kolektory uletěly nebo se vyvrátily.  U vakuových trubicových systémů…

  • Solární kolektory na ohřev vody od A do Z

    Solární kolektory na ohřev vody od A do Z Tento článek slouží jako kompletní rozcestník pro všechny, kdo se zajímají o solární kolektory na ohřev vody. Najdete zde odkazy na nejdůležitější témata – od účinnosti, výkonu a odolnosti až po ceny, možnosti zapojení, údržbu a návratnost. Pokud zvažujete pořízení solárních kolektorů nebo se chcete lépe…